

MECHANICAL DATA

Dimensions in mm (inches)

SMD 1 (TO-276AB)

Pad 1 - Gate Pad 3 - Source Pad 2 – Drain

P-CHANNEL **POWER MOSFET** FOR HI-REL **APPLICATIONS**

V_{DSS} -100V I_{D(cont)} -12A R_{DS(on)} 0.3Ω

FEATURES

- HERMETICALLY SEALED
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- SCREENING OPTIONS AVAILABLE
- ALL LEADS ISOLATED FROM CASE

(also available as IRF9530SMD with Gate and Source reversed)

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{BV_{DS}}$	Drain – Source BreakdownVoltage	-100V		
V_{GS}	Gate – Source Voltage	±20V		
I_D	Continuous Drain Current @ T _{case} = 25°C	-12A		
I_D	Continuous Drain Current @ T _{case} = 100°C	-8A		
I_{DM}	Pulsed Drain Current	-48A		
P_{D}	Power Dissipation @ T _{case} = 25°C	75W		
	Linear Derating Factor	0.6W/°C		
T_J , T_stg	Operating and Storage Temperature Range	−55 to +175°C		
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.7°C/W max.		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

Document Number 5356

Issue 1

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	STATIC ELECTRICAL RATINGS	•	•			
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$ $I_{D} = -250 \mu A$	-100			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Temperature Coefficient of Breakdown Voltage	Reference to 25°C I _D = -1mA	4	-0.1		V/°C
R _{DS(on)}	Static Drain – Source On–State Resistance*	$V_{GS} = -10V$ $I_D = -7A$			0.30	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = -250\mu A$	-2		-4	V
9 _{fs}	Forward Transconductance*	$V_{DS} \ge -50V$ $I_{DS} = -7A$	3.7			S(Ω)
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -100V			-100	μΑ
	$(V_{GS} = 0)$	$V_{DS} = -80V$ $T_{J} = 150^{\circ}C$			-500	
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = -20V			-100	nA
I _{GSS}	Reverse Gate – Source Leakage	V _{GS} = 20V			100	
	DYNAMIC CHARACTERISTICS	•	•			
C _{iss}	Input Capacitance	$V_{GS} = 0$		860		pF
C _{oss}	Output Capacitance	V _{DS} = -25V		340		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		93		
Q_g	Total Gate Charge	V _{GS} = -10V			38	
Q _{gs}	Gate - Source Charge	I _D = -12A			6.8	nC ns
Q _{gd}	Gate - Drain ("Miller") Charge	$V_{DS} = 0.8BV_{DSS}$			21	
t _{d(on)}	Turn-On Delay Time	V _{DD} = -50V		12		
t _r	Rise Time	I _D = -12A		52		
t _{d(off)}	Turn-Off Delay Time	$R_G = 12\Omega$		31		
t _f	Fall Time	$R_D = 3.9\Omega$		39		
	SOURCE - DRAIN DIODE CHARAC	TERISTICS				
I _S	Continuous Source Current				-12	А
I_{SM}	Pulse Source Current				-48	
V_{SD}	Diode Forward Voltage*	$I_S = -12A$ $V_{GS} = 0_V$,		-6.3	V
t _{rr}	Reverse Recovery Time	$I_F = -12A$ $V_{DD} \le -50$	V	120	240	ns
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ -100A/μs		0.46	0.92	μС

Notes

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

Document Number 5356

E-mail: sales@semelab.co.uk Website http://www.semelab.co.uk

^{*} Pulse Test: Pulse Width $\leq 300 \mu s$, $\delta \leq 2\%$